先进功能材料丛书:生物启发与仿生型高分子药物及基因递送系统
  • 先进功能材料丛书:生物启发与仿生型高分子药物及基因递送系统

先进功能材料丛书:生物启发与仿生型高分子药物及基因递送系统

by 京东图书  |  由 京东图书  亚米商城卖家

积分原则不参加任何折扣活动以及亚米会员积分制度。

正品保障所售商品均从正规销售资格认证的供应商,品牌分支机构,驻美国分公司等正规渠道采购,并签订正品保证协议。

  销售和配送
$118.60 送积分 : 0
已售完
 收藏商品

送至: 91789 暂时缺货

提醒我

想要第一时间知道到货?

品牌 : 京东图书

品牌属地 : 中国

第三方商家

京东图书进入店铺

配送信息

USPS International $11.99(订单满$49包邮)
USPS Canada $11.99(订单满$49包邮)
1. $49以上的订单,提供美国本土平寄免邮费的服务。(只限美国本土48州,不包含夏威夷、阿拉斯加、关岛、波多黎各等地区)。 2. $49以下美国本土USPS平寄, 我们将收取$11.99运费。 3. 通过中国EMS直邮转USPS,配送时间预计为6-13天。

退换政策

因商品破损或者质量问题可申请无条件退款,请在收到包裹3个工作日内联系客服。若因个人原因申请退款,请在3个工作日内联系客服,邮费需顾客承担。图书类商品不支持换货,请见谅!

商品详情

编者 : 顾忠伟 品牌 : 京东图书 出版时间 : 2015-03-01 品牌属地 : 中国 出版社 : 化学工业出版社 语言 : 中文,英文 ISBN : 9787122230072 版次 : 1 页数 : 331 包装 : 精装 用纸 : 胶版纸
内容简介

近年来,生物活性物质控释系统的研究主要集中于:时控型药物控释系统;自调节药物控释系统;靶药物控释系统;组织/细胞微环境响应性药物控释系统以及核酸类药物递送系统。受自然界启发,如何运用仿生的方法构建和优化药物、蛋白质和基因的递送系统已是一个新兴的发展方向和趋势,它是涉及生物学、材料学、化学、物理学、药学、工程学等学科的多学科交叉研究领域。
《先进功能材料丛书:生物启发与仿生型高分子药物及基因递送系统》汇聚了包括美国工程院院士在内的多名国内外药物控释系统研究领域的著名科学家近年来的最新研究工作。作为国际上第一本生物启发和仿生高分子的药物及基因递送系统的专著,《先进功能材料丛书:生物启发与仿生型高分子药物及基因递送系统》不仅报道了药物递送领域的最新进展和未来发展方向,还分别从材料与细胞相互作用、载体材料的组织/细胞微环境响应性设计、控释系统在体内环境下生物活性物质的高效释放及有效表达等不同的角度对药物递送系统的未来发展方向进行了新的诠释和展望,充分体现了前瞻性和新颖性,是该领域一部难得的、非常有价值的专著。
《先进功能材料丛书:生物启发与仿生型高分子药物及基因递送系统》可供从事生物工程、纳米技术及材料领域的高校、科研院所、公司企业的相关研究人员使用。同时可作为生物医学工程、高分子科学及相关交叉学科的研究生及本科生教学参考书。
作者简介

顾忠伟,四川大学国家医学材料工程技术研究中心,教授博导,973首席科学家,自七十年代中期以来,致力于生物医用高分子材料及其药物/生物活性物质控制释放系统的基础和应用基础研究,并在这一领域内积累了较丰富的理论基础知识和实践经验,掌握了这一领域的科学前沿和发展方向。先后三次出任国家973计划项目首席科学家并负责其子项目,曾主持“七.五”、“八.五”、“九.五”国家重点攻关、国家自然科学基金重点和面上、国家新药研究基金、北京市自然科学基金、国家科技部、国家计生委及国际合作项目等近30项科研项目。曾获得两项部委科技奖励;在国内外重要学术期刊上发表论文共180余篇(其中SCI源刊论文160余篇),以及80篇国际及全国学术会议报告摘要,并在世界生物材料大会、亚洲生物材料大会、中国材料学会年会、全国高分子年会等国内外学术会议上作了60余次大会或邀请报告;主持和参与组织生物材料国际及全国学术会议20余次,多次参与有关我国生物材料发展规划和建议讨论并执笔。现为J. Reproductive Medicine 杂志副主编,Biomed. Mater. 、Int. J Med. Eng. & Inf.、Biomatter等杂志编委。
目录

List of Contributors XIII
Preface XIX
1 Backbone Degradable and Coiled-Coil Based Macromolecular
Therapeutics
Jiyuan Yang and Jindˇ rich Kopeˇ cek
1.1 Introduction
1.2 Water-Soluble Polymers as Carriers of Anticancer Drugs
1.2.1 First Generation Conjugates - Design, Synthesis, and Activity
1.2.2 Analysis of Design Factorshat Need Attention
1.2.2.1 Design of Conjugates for the Treatment of Noncancerous Diseases
1.2.2.2 Combinationherapy Using Polymer-Boundherapeutics
1.2.2.3 New Targeting Strategies
1.2.2.4 Relationship Between Detailed Structure of the Conjugates andheir Properties
1.2.2.5 Impact of Binding a Drug to a Polymer on the Mechanism of Action
1.2.2.6 Mechanism of Internalization and Subcellular Tra'cking
1.2.2.7 Relationship Between the MolecularWeight of the Carrier and the E'cacy of the Conjugate
1.2.3 Design of Second Generation Conjugates - Long-Circulating and Backbone Degradable
1.2.3.1 RAFT Copolymerization for the Synthesis of Conjugates
1.2.3.2 Click Reactions for Chain Extension into Multiblock Copolymers
1.2.3.3 Biological Properties of Long-Circulating Macromolecular herapeutics
1.2.4 Summary of Part 2 and Future Prospects
1.3 Drug-Free Macromolecularherapeutics - A New Paradigm in Drug Delivery
1.3.1 Biorecognition in Hybrid Polymer Systems
1.3.2 Coiled-Coils in Biomedical Systems
1.3.3 Coiled-Coil Based Drug-Free Macromolecularherapeutics: Design, In Vitro,and In Vivo Activity
1.3.4 Potential, Limitations, and Future Prospect of Drug-Free Macromolecularherapeutics
1.4 General Summary and Outlook Acknowledgments
References

2 Dendritic Polymers as Targeting Nanoscale Drug Delivery Systems for Cancer Therapy Kui Luo and Zhongwei Gu
2.1 Introduction
2.2 Functional Dendritic Polymers Based Drug Delivery Vehicles for Targeting Tumorherapy via EPR Eect
2.2.1 Functional Dendritic Polymers for Encapsulation of Anticancer Drugs
2.2.2 Chemical Conjugation Functional Dendritic Polymers as Drug Delivery Systems
2.3 Tumor Targeting Moieties Functionalized Dendritic Drug Delivery Vehicles for Cancerherapy
2.4 Conclusion
References

3 Composite Colloidal Nanosystems for Targeted Delivery and Sensing Pilar Rivera Gil,Moritz Nazarenus, and Wolfgang J. Parak
3.1 Introduction
3.1.1 Working Toolkit
3.1.2 Engineering a Multifunctional Carrier
3.2 Objective
3.3 Cellular Behavior of the Carrier
3.3.1 Intracellular Fate
3.3.2 Biocompatibility
3.4 Applications
3.4.1 Delivery with Multifunctional PEM Capsules
3.4.1.1 Magnetic Targeting and Magnet of ection
3.4.1.2 Strategies for Controlled Opening
3.4.2 Intracellular Ion Sensing
3.5 Conclusions Abbreviations
References

4 Polymeric Micelles for Cancer-Targeted Drug Delivery Huabing Chen, Zhishen Ge, and Kazunori Kataoka
4.1 Introduction
4.2 Micelle Formulations in Clinical Development
4.3 Particle Size of Micelles
4.4 Morphology of Micelles
4.5 Targeting Design of Micelles for Enhanced Accumulation and Cell Internalization
4.6 Functional Designs of Micelles
4.7 Design of Micelles for Gene Delivery
4.8 Challenge and Future Perspective
References

5 Biomimetic Polymers for In Vivo Drug Delivery Wenping Wang and Kinam Park
5.1 Introduction
5.2 Commonly Used Biomimetic Polymers andheir Applications in DDS
5.2.1 Polylactones andheir Modi?cations
5.2.1.1 Poly(lactic acid) (PLA)
5.2.1.2 Poly(lactic-co-glycolic acid) (PLGA)
5.2.1.3 Poly(ε-caprolactone) (PCL)
5.2.2 Dendrimer
5.2.2.1 Structure and Properties of Dendrimers
5.2.2.2 Types of Dendrimers
5.2.2.3 Applications of Dendrimers as Carriers in Drug Delivery Systems
5.2.3 Synthetic Polypeptides
5.3 Challenges and Perspectives
References

6 Drug Delivery fromProtein-Based Nanoparticles Dan Ding and Xiqun Jiang
6.1 Introduction
6.2 Preparation of Protein-Based Nanoparticles
6.2.1 Desolvation
6.2.2 Emulsi?cation
6.2.3 Coacervation
6.2.4 Polymer-Monomer Pair Reaction System
6.3 Drug Delivery from Albumin-Based Nanoparticles
6.3.1 Albumin-Based Nanoparticles as Drug Carriers
6.3.2 Targeting Ligand-Functionalized Albumin-Based Nanoparticles
6.3.3 Nanoparticle Albumin-Bound (nab)Technology
6.4 Drug Delivery from Gelatin-Based Nanoparticles
6.4.1 Gelatin-Based Nanoparticles as Drug Carriers
6.4.2 Targeting Ligand-Functionalized Gelatin-Based Nanoparticles
6.4.3 Site-Speci?c Drug Delivery System
6.5 Drug Delivery from Other Protein-Based Nanoparticles
References

7 Polymeric Gene Carriers Xuesi Chen, Huayu Tian, and Xiuwen Guan
7.1 Geneherapy and Gene Carriers
7.1.1 Geneherapy
7.1.1.1 he Concept of Geneherapy
7.1.1.2 Development and the Present Situation of Geneherapy
7.1.1.3 Methods and Strategies of Geneherapy
7.1.1.4 Research Contents and Challenges of Geneherapy
7.1.2 Gene Carriers
7.1.2.1 he Concept of Gene Carrier
7.1.2.2 he Necessity of the Gene Carrier
7.1.2.3 Requirements of Gene Carrier
7.1.2.4 Classi?cation of Gene Carrier
7.2 Polymeric Gene Carriers
7.2.1 Cationic Polymer Gene Carriers
7.2.1.1 Process of the Polycation Vector Mediated Gene Delivery
7.2.1.2 Categories and Research Situation of the Cationic Polymer Gene Vector
7.3 PEI Grafting Modi?cation Polymeric Gene Carriers
7.3.1 Amino Acid Derivatives Modi?ed Polymeric Gene Carriers
7.3.1.1 Poly(glutamic acid) Derivatives Modi?ed PEI
7.3.1.2 Polyphenylalanine Derivatives Modi?ed PEI
7.3.2 PEG Modi?ed Hyperbranched PEI
7.4 Low MolecularWeight (LWM) PEI Base Polymeric Gene Carriers
7.4.1 Crosslinked Polycations
7.4.1.1 Crosslinked Polycation OEI-CBA
7.4.1.2 Crosslinked Polycation OEI-PBLG-PEGDA
7.4.1.3 Hexachlorotriphosphazene Crosslinked Polycation
7.4.2 Grafted Polycations
7.4.2.1 Grafted Cationic Polymer MP-g-OEI
7.4.2.2 Graft Cationic Polymer N-PAE-g-OEI
7.4.2.3 Graft Cationic Polymer mPEG-b-PMCC-g-OEI
7.5 Targeted Shielding System for Polymeric Gene Carriers
7.5.1 Static Shielding System
7.5.1.1 Poly(glutamine acid) Shielding System and PEGylations
7.5.1.2 Sulfonamides Related Shielding System
7.5.2 Other Design Strategies of Cationic Gene Carrier
7.6 Conclusion
References

8 pH-Sensitive Polymeric Nanoparticles as Carriers for Cancer Therapy and Imaging Yi Li, Guang Hui Gao, Ick Chan Kwon, and Doo Sung Lee
8.1 Introduction
8.2 pH-Sensitive Polymers
8.2.1 pH-Sensitive Anionic Polymers
8.2.2 pH-Sensitive Cationic Polymers
8.2.3 pH-Sensitive Neutral Polymers
8.3 pH-Sensitive Polymers as Drug Carriers
8.3.1 pH-Sensitive Polymer-Drug Conjugates
8.3.2 pH-Sensitive Polymeric Micelles
8.3.3 pH-Sensitive Polymersomes
8.3.4 pH-Sensitive Polymer-Inorganic Hybrid Nanoparticles
8.3.5 pH-Sensitive Dendrimers
8.4 pH-Sensitive Polymers for Bioimaging
8.5 Conclusions
References

9 Charge-Reversal Polymers for Biodelivery Bo Zhang, KaiWang, Jingxing Si,Meihua Sui, and Youqing Shen
9.1 Applications of Cationic Polymers in Biodelivery
9.2 Barriers for Cationic Polymers in In vitro and In vivo Applications
9.3 Characteristic pH Gradients in Tumor Interstitium and Endo/Lysosomes
9.4 Chemistry of Charge-Reversal Polymers Based on Acid-Labile Amides
9.4.1 pHe-Triggered Charge-Reversal
9.4.2 pHL-Triggered Charge-Reversal
9.5 Applications of Charge-Reversal Polymers in Biodelivery Systems
9.5.1 Charge-Reversal in Cancer Drug Delivery
9.5.2 Charge-Reversal in Gene Delivery
9.5.3 Charge-Reversal in Protein Delivery
9.5.4 Charge-Reversal Incorporated with Inorganic Materials
9.6 Perspectives
References

10 Phenylboronic Acid-Containing Glucose-Responsive Polymer Materials: Synthesis and Applications in Drug Delivery RujiangMa and Linqi Shi
10.1 Introduction
10.2 PBA-Containing Polymers Operating Under Physiological Conditions
10.3 Chemically Crosslinked PBA-Based Gels
10.4 Self-Assembled PBA-Based Polymer Micelles
10.5 Self-Assembled PBA-Based Polymersomes
10.6 Perspectives
References

11 Extracellular pH-Activated Nanocarriers for Enhanced Drug Delivery to Tumors
You-Yong Yuan, Cheng-QiongMao, Jin-Zhi Du, Xian-Zhu Yang, and JunWang
11.1 Introduction
11.2 Passive and Active Tumor Targeting
11.3 Targeting the Extracellular pH (pHe) in Tumors
11.4 Extracellular pH-Induced Drug Delivery to Tumors
11.5 Ligand Exposure by a Shielding/Deshielding Method
11.6 Surface Charge Reversing Nanoparticles
11.6.1 Enhanced Cellular Uptake by Surface Charge Reversing Nanoparticles
11.6.2 Overcoming MDR by Surface Charge Reversing Nanoparticles
11.6.3 Enhanced Delivery of siRNA by Surface-Charge Reversing Nanoparticles
11.7 Conclusion
References

12 Stimulation-Sensitive Drug Delivery Systems Xintao Shuai and Du Cheng
12.1 Introduction
12.2 pH-Sensitive Delivery Systems
12.2.1 pH-Sensitive Micellar Delivery Systems
12.2.2 pH-Sensitive Polymer-Drug Conjugates
12.2.3 pH-Sensitive Dendrimers
12.2.4 pH-Sensitive Liposomes
12.3 hermo-Sensitive Delivery Systems
12.4 Biomolecule-Sensitive Delivery Systems
12.4.1 Enzyme-Sensitive Nanocarriers
12.4.2 Reduction-Responsive Conjugates
12.5 Other Environmentally Sensitive Nanocarriers
12.6 Outlook
References
Index
前言/序言

In recent years, the rapid development of polymer science and advances in mod-ern medicine, pharmacy, biology, and ngineering have fostered the emergence of a new ?eld focused on the theory and technology underlying drug delivery.his inter-disciplinary ?eld is called drug delivery systems (DDS). It shows great promise and has become a hotspot in biomedical material research, especially in biomedical polymers.
he successful development of advanced, e?cient DDS depends on the design and construction of the materials and micro devices involved.he research fron-tier focuses mainly on targeted delivery, especially cell and molecular targeting,and on controlled release stimulated by the tissue or cellular microenvironment.he complex in vivo physiological and pathological environment often obscures the e?ects of active targeting. In this way, producing a highly e?cient system capable of active targeting in vivo is the key to improving the e?cacy of DDS.Drug release systems capable of biological sensing are called bioinspired and biomimetic delivery systems. hey automatically adjust the drug release in response to external stimuli, such as changes in temperature, pH, magnetic ?elds, ultrasound, and electric ?elds. hey have received a considerable amount
of attention from researchers and pharmaceutical companies worldwide. Drug release systems that can be switched on and o? via self-feedback upon changes in the chemical or physical signals given o? by a lesion or intelligent carrier have drawn particular interest. Systems that can undergo rapid stimuli-responsive controlled release under in vivo microenvironment conditions would be far more useful to actual clinical treatment regimens.
his book embodies the wisdom and achievements of renowned experts and research teams in this ?eld from China, the United States, Germany, Japan, and Korea. he discussion provided herein covers the most important, active, and cutting-edge parts of this ?eld, re?ecting the latest developments and trends in DDS research.he chief editor, Professor ZhongweiGu, studied under the pioneer biomedical polymers in China–Professor Xin-De Feng (Academician of Chinese Academy of Sciences). Gu entered this ?eld in the 1970s and has become a well-known professor of polymer biomaterials in China. It is our hope that this book will promote scienti?c research and biomedical applications in the vibrant and exciting area. Young academics and professionals interested in DDSmay also ben-e?t from this treatise.
We would like to thank all our editors for their hard work and dedication. We would also like to thank John Wiley & Sons Publishing Company and Chemical Industry Press for their forward-looking strategic vision and the timely publica-
tion of this book.
August 2014 Professor Ren-Xi Zhuo
Academician of Chinese Academy of Sciences
IUS-BSE Fellow
Wuhan University
Wuhan, China

产品价格、包装、规格等信息如有调整,恕不另行通知。我们尽量做到及时更新产品信息,但请以收到实物为准。使用产品前,请始终阅读产品随附的标签、警告及说明。详细条款请参阅我们的Terms of Use.

商品评价

先进功能材料丛书:生物启发与仿生型高分子药物及基因递送系统 还没有人发表评论,快来抢占沙发了! 写评论

浏览过的商品

联系我们

联系方式

周一至周日,美西时间: 6AM - 1:30AM

美东时间: 9AM - 4:30AM

help@yamibuy.com

1(800)407-9710