English
0 {{sellerTotalView > 1 ? __("sellers") : __("seller") }}, 0 {{numTotalView > 1 ? __("items") : __("item") }}

Yamibuy

Nickname

请告诉我们怎么更好地称呼你

更新你的名字
账户 订单 收藏
邀请好友 $10+
退出登录

切换配送区域

不同区域的库存和配送时效可能存在差异.

历史邮编
yamibuy

京东图书

深度学习优化与识别

{{buttonTypePin == 3 ? __("Scan to view more PinGo") : __("Scan to stat")}}

深度学习优化与识别

{{__(":people-members", {'people': item.limit_people_count})}} {{ itemCurrency }}{{ item.valid_price }} {{ itemCurrency }}{{ item.invalid_price }} {{ itemDiscount }}
后结束
{{ itemCurrency }}{{ item.valid_price }}
{{ itemCurrency }}{{ priceFormat(item.valid_price / item.bundle_specification) }}/{{ item.unit }}
{{ itemDiscount }}
{{ itemCurrency }}{{ item.valid_price }} {{ itemCurrency }}{{ priceFormat(item.valid_price / item.bundle_specification) }}/{{ item.unit }} {{ itemCurrency }}{{ item.invalid_price }} {{itemDiscount}}
{{ itemCurrency }}{{ item.valid_price }}
后结束促销
后开始秒杀 后结束秒杀
{{ getSeckillDesc(item.seckill_data) }}
{{ __( "Pay with Gift Card to get sale price: :itemCurrency:price", { 'itemCurrency' : itemCurrency, 'price' : (item.giftcard_price ? priceFormat(item.giftcard_price) : '0.00') } ) }} ({{ itemCurrency }}{{ priceFormat(item.giftcard_price / item.bundle_specification) }}/{{ item.unit }}) 详情
商品有效期

已下架

当前地址无法配送
已售完
加入收藏 已加入收藏
{{ $isZh ? coupon.coupon_name_sub : coupon.coupon_ename_sub | formatCurrency }}
{{__("Buy Directly")}} {{ itemCurrency }}{{ item.directly_price }}
数量
{{ quantity }}
{{ instockMsg }}
{{ limitText }}
{{buttonTypePin == 3 ? __("Scan to view more PinGo") : __("Scan to stat")}}

商品描述

展开全部描述
编辑推荐

《深度学习、优化与识别》的特色

深度学习是计算机科学与人工智能的重要组成部分。全书16章,分为理论与实践应用两部分,同时介绍5种深度学习主流平台的特性与应用,后给出了深度学习的前沿进展介绍,另附带47种相关网络模型的实现代码。本书具有以下的特点:

一、内容系统全面

《深度学习、优化与识别》共16章,覆盖了深度学习当前出现的诸多经典框架或模型,《深度学习、优化与识别》分为两个部分。《深度学习、优化与识别》第一部分系统地从数据、模型、优化目标函数和求解等四个方面论述了深度学习的理论及算法,如卷积神经网络、深度生成模型等;第二部分基于5种主流的深度学习平台给出了深度网络在自然图像、卫星遥感影像等领域的应用,如分类、变化检测、目标检测与识别等任务。另外给出了深度学习发展的脉络图及新研究进展,提供可基于5种平台实现的47中深度网络代码,以便有兴趣的读者进一步钻研探索。

二、叙述立场客观

作为深度学习的入门教材,尽可能不带偏见地对材料进行分析、加工以及客观介绍。《深度学习、优化与识别》理论部分均从模型产生的本源来介绍,并给出各个经典模型之间内在的相互联系。《深度学习、优化与识别》实践应用部分对相关任务做了详尽的分析,并给出深度学习应用实践的经验总结。

三、设计装帧精美

《深度学习、优化与识别》设计人性化,文字、公式、数学符号混排格式美观精致,特别是,《深度学习、优化与识别》全书采用全彩印制,软精装装帧。封面设计清新却不脱俗、学术化,足可以看出出版社和作者的用心。


内容简介

深度神经网络是近年来受到广泛关注的研究方向,它已成为人工智能2.0的主要组成部分。《深度学习、优化与识别》系统地论述了深度神经网络基本理论、算法及应用。《深度学习、优化与识别》全书共16章,分为两个部分;第一部分(第1章~10章)系统论述了理论及算法,包括深度前馈神经网络、深度卷积神经网络、深度堆栈神经网络、深度递归神经网络、深度生成网络、深度融合网络等;第二部分(第11~15章)论述了常用的深度学习平台,以及在高光谱图像、自然图像、SAR与极化SAR影像等领域的应用;第16章为总结与展望,给出了深度学习发展的历史图、前沿方向及进展。《深度学习、优化与识别》每章都附有相关阅读材料及仿真代码,以便有兴趣的读者进一步钻研探索。

《深度学习、优化与识别》可为高等院校计算机科学、电子科学与技术、信息科学、控制科学与工程、人工智能等领域的研究人员提供参考,以及作为相关专业本科生及研究生教学参考书,同时可供深度学习及其应用感兴趣的研究人员和工程技术人员参考。


作者简介

焦李成,男,汉族,1959年10月生,1992年起任西安电子科技大学教授。现任智能感知与计算国际联合研究中心主任、智能感知与图像理解教育部重点实验室主任、智能感知与计算国际合作联合实验室主任、“智能信息处理科学与技术”高等学校学科创新引智基地(“111计划”)主任、教育部科技委国际合作部学部委员、中国人工智能学会副理事长、IET西安分会主席、IEEE西安分会奖励委员会主席、IEEE计算智能协会西安分会主席、IEEEGRSS西安分会主席,IEEETGRS副主编、教育部创新团队首席专家。国务院学位委员会学科评议组成员、教育部本科教学水平评估专家。1991年被批准为享受国务院政府津贴的专家,1996年首批入选国家“百千万”人才工程。当选为全国模范教师、陕西省师德标兵和曾任第八届全国人大代表。

焦李成教授的主要研究方向为智能感知与计算、图像理解与目标识别、深度学习与类脑计算,培养的十余名博士获全国优秀博士学位论文奖、提名奖及陕西省优秀博士论文奖。研究成果获包括国家自然科学奖二等奖及省部级一等奖以上科技奖励十余项,出版学术专著十余部,五次获国家优秀科技图书奖励及全国首届三个一百优秀图书奖。所发表的论著被他人引用超过25000余篇次,H指数为65。


目录

目录


第1章深度学习基础


1.1数学基础


1.1.1矩阵论


1.1.2概率论


1.1.3优化分析


1.1.4框架分析


1.2稀疏表示


1.2.1稀疏表示初步


1.2.2稀疏模型


1.2.3稀疏认知学习、计算与识别的范式


1.3机器学习与神经网络


1.3.1机器学习


1.3.2神经网络


参考文献


第2章深度前馈神经网络


2.1神经元的生物机理


2.1.1生物机理


2.1.2单隐层前馈神经网络


2.2多隐层前馈神经网络


2.3反向传播算法


2.4深度前馈神经网络的学习范式


参考文献


第3章深度卷积神经网络


3.1卷积神经网络的生物机理及数学刻画


3.1.1生物机理


3.1.2卷积流的数学刻画


3.2深度卷积神经网络


3.2.1典型网络模型与框架


3.2.2学习算法及训练策略


3.2.3模型的优缺点分析


3.3深度反卷积神经网络


3.3.1卷积稀疏编码


3.3.2深度反卷积神经网络


3.3.3网络模型的性能分析与应用举例


3.4全卷积神经网络


3.4.1网络模型的数学刻画


3.4.2网络模型的性能分析及应用举例


参考文献


第4章深度堆栈自编码网络


4.1自编码网络


4.1.1逐层学习策略


4.1.2自编码网络


4.1.3自编码网络的常见范式


4.2深度堆栈网络


4.3深度置信网络/深度玻尔兹曼机网络


4.3.1玻尔兹曼机/受限玻尔兹曼机


4.3.2深度玻尔兹曼机/深度置信网络


参考文献


第5章稀疏深度神经网络


5.1稀疏性的生物机理


5.1.1生物视觉机理


5.1.2稀疏性响应与数学物理描述


5.2稀疏深度网络模型及基本性质


5.2.1数据的稀疏性


5.2.2稀疏正则


5.2.3稀疏连接


5.2.4稀疏分类器设计


5.2.5深度学习中关于稀疏的技巧与策略


5.3网络模型的性能分析


5.3.1稀疏性对深度学习的影响


5.3.2对比试验及结果分析


参考文献


第6章深度融合网络


6.1深度SVM网络


6.1.1从神经网络到SVM


6.1.2网络模型的结构


6.1.3训练技巧


6.2深度PCA网络


6.3深度ADMM网络


6.4深度极限学习机


6.4.1极限学习机


6.4.2深度极限学习机


6.5深度多尺度几何网络


6.5.1深度脊波网络


6.5.2深度轮廓波网络


6.6深度森林


6.6.1多分辨特性融合


6.6.2级联特征深度处理


参考文献


第7章深度生成网络


7.1生成式对抗网络的基本原理


7.1.1网络模型的动机


7.1.2网络模型的数学物理描述


7.2深度卷积对抗生成网络


7.2.1网络模型的基本结构


7.2.2网络模型的性能分析


7.2.3网络模型的典型应用


7.3深度生成网络模型的新范式


7.3.1生成式对抗网络的新范式


7.3.2网络框架的性能分析与改进


7.4应用驱动下的两种新生成式对抗网络


7.4.1堆栈生成式对抗网络


7.4.2对偶学习范式下的生成式对抗网络


7.5变分自编码器


参考文献


第8章深度复卷积神经网络与深度二值神经网络


8.1深度复卷积神经网络


8.1.1网络模型构造的动机


8.1.2网络模型的数学物理描述


8.2深度二值神经网络


8.2.1网络基本结构


8.2.2网络的数学物理描述


8.2.3讨论


参考文献


第9章深度循环和递归神经网络


9.1深度循环神经网络


9.1.1循环神经网络的生物机理


9.1.2简单的循环神经网络


9.1.3深度循环神经网络的数学物理描述


9.2深度递归神经网络


9.2.1简单的递归神经网络


9.2.2深度递归神经网络的优势


9.3长短时记忆神经网络


9.3.1改进动机分析


9.3.2长短时记忆神经网络的数学分析


9.4典型应用


9.4.1深度循环神经网络的应用举例


9.4.2深度递归神经网络的应用举例


参考文献


第10章深度强化学习


10.1深度强化学习简介


10.1.1深度强化学习的基本思路


10.1.2发展历程


10.1.3应用新方向


10.2深度Q网络


10.2.1网络基本模型与框架


10.2.2深度Q网络的数学分析


10.3应用举例——AlphaGo


10.3.1AlphaGo原理分析


10.3.2深度强化学习性能分析


参考文献


第11章深度学习软件仿真平台及开发环境


11.1Caffe平台


11.1.1Caffe平台开发环境


11.1.2AlexNet神经网络学习


11.1.3AlexNet神经网络应用于图像分类


11.2TensorFlow平台


11.2.1TensorFlow平台开发环境


11.2.2深度卷积生成式对抗网DCGAN


11.2.3DAN应用于样本扩充


11.3MXNet平台


11.3.1MXNet平台开发环境


11.3.2VGGNET深度神经网络学习


11.3.3图像分类应用任务


11.4Torch 7平台


11.4.1Torch 7平台开发环境


11.4.2二值神经网络


11.4.3二值神经网络应用于图像分类


11.5Theano平台


11.5.1Theano平台开发环境


11.5.2递归神经网络


11.5.3LSTM应用于情感分类任务


参考文献


第12章基于深度神经网络的SAR/PolSAR影像地物分类


12.1数据集及研究目的


12.1.1数据集特性分析


12.1.2基本数据集


12.1.3研究目的


12.2基于深度神经网络的SAR影像地物分类


12.2.1基于自适应自编码和超像素的SAR图像分类


12.2.2基于卷积中层特征学习的SAR图像分类


12.3基于第一代深度神经网络的PolSAR影像地物分类


12.3.1基于稀疏极化DBN的极化SAR地物分类


12.3.2基于深度PCA网络的极化SAR影像地物分类


12.4基于第二代深度神经网络的PolSAR影像地物分类


12.4.1基于深度复卷积网络的PolSAR影像地物分类


12.4.2基于生成式对抗网的PolSAR影像地物分类


12.4.3基于深度残差网络的PolSAR影像地物分类


参考文献


第13章基于深度神经网络的SAR影像的变化检测


13.1数据集特点及研究目的


13.1.1研究目的


13.1.2数据基本特性


13.1.3典型数据集


13.2基于深度学习和SIFT特征的SAR图像变化检测


13.2.1基本方法与实现策略


13.2.2对比试验结果分析


13.3基于SAE的SAR图像变化检测


13.3.1基本方法与实现策略


13.3.2实验结果和分析


13.4基于CNN的SAR图像变化检测


13.4.1基本方法与实现策略


13.4.2对比试验结果分析


参考文献


第14章基于深度神经网络的高光谱图像分类与压缩


14.1数据集及研究目的


14.1.1高光谱遥感技术


14.1.2高光谱遥感的研究目的


14.1.3常用的高光谱数据集


14.2基于深度神经网络的高光谱影像的分类


14.2.1基于堆栈自编码的高光谱影像的分类


14.2.2基于卷积神经网络的高光谱影像的分类


14.3基于深度神经网络的高光谱影像的压缩


14.3.1基于深度自编码网络的高光谱图像压缩方法


14.3.2实验设计及分类结果


参考文献


第15章基于深度神经网络的目标检测与识别


15.1数据特性及研究目的


15.1.1研究目的


15.1.2常用数据集


15.2基于快速CNN的目标检测与识别


15.2.1RCNN


15.2.2Fast RCNN


15.2.3Faster RCNN


15.2.4对比实验结果与分析


15.3基于回归学习的目标检测与识别


15.3.1YOLO


15.3.2SSD


15.3.3对比实验结果与分析


15.4基于学习搜索的目标检测与识别


15.4.1基于深度学习的主动目标定位


15.4.2AttentionNet


15.4.3对比实验结果与分析


参考文献


第16章总结与展望


16.1深度学习发展历史图


16.1.1从机器学习、稀疏表示学习到深度学习


16.1.2深度学习、计算与认知的范式演进


16.1.3深度学习形成脉络


16.2深度学习的应用介绍


16.2.1目标检测与识别


16.2.2超分辨


16.2.3自然语言处理


16.3深度神经网络的可塑性


16.3.1旋转不变性


16.3.2平移不变性


16.3.3多尺度、多分辨和多通路特性


16.3.4稀疏性


16.4基于脑启发式的深度学习前沿方向


16.4.1生物神经领域关于认知、识别、注意等的最新研究进展


16.4.2深度神经网络的进一步研究方向


16.4.3深度学习的可拓展性


参考文献


附录A基于深度学习的常见任务处理介绍


附录B代码介绍




前言/序言


从1308年加泰罗尼亚诗人、神学家雷蒙·卢尔(Ramon Llull)发表了有关用机械方法从一系列现象中创造新知识的论文开始,到1943年美国心理学家W.S. McCulloch和数学家W.Pitts提出MP模型及1950年A.Turing提出著名的图灵测试,再到1956年达特茅斯会议上人工智能的诞生,神经网络几经沉浮,走过了艰难曲折的历程; 2006年从单隐层神经网络到深度神经网络模型,迎来了神经网络发展的又一高潮,深度学习及其应用受到了前所未有的重视与关注,世界迎来又一轮人工智能变革的高潮,从谷歌脑到中国脑科学计划,再到互联网+和中国人工智能2.0,人工智能及深度学习也首次写进了2017年全国人民代表大会第十五次会议国务院政府工作报告。深度学习是人工智能及机器学习的一个重要方向,在未来,它将会不断出现激动人心的理论进展和方法实践,深刻影响我们生活的方方面面。

随着研究的不断深入,深度学习已经超越了目前机器学习模型的神经科学观点,学习多层次组合的这一设计原则更加吸引人。从第一代的深度前馈神经网络开始,随之而来的就有如下三个问题: 一是可用训练数据量远小于模型中的参数量,容易出现过(欠)拟合现象; 二是随着层级的增加,模型的优化目标函数呈现高度非凸性,由于待优化参数所在的可行域中存在着大量的鞍点和局部极小值点,所以参数初始化策略影响着网络模型的稳定性和收敛性; 三是基于误差的反向传播算法越靠近输出层变化越大,越靠近输入层变化越小,这对通过梯度下降方式来实现逐层参数更新会导致梯度弥散现象。为了解决第一个问题便提出了深度卷积神经网络和深度循环神经网络,其核心均是通过约减参数量间接提升数据量的方式降低过拟合现象的发生; 针对第二个问题和第三个问题便引入了基于自编码器的逐层初始化策略,以期获取的初始化参数能够避免过早地陷入局部最优,同时弱化或克服梯度弥散现象,例如基于受限波尔兹曼机的深度置信网络。进一步,基于传统的机器学习算法来实现参数初始化方向上涌现了如深度PCA网络、深度ICA网络、深度SVM网络、深度森林(随机森林多层级联)、深度极限学习机和深度ADMM网络等模型。同时与之类似的,通过更改非线性函数以换取模型“扭曲”能力的提升,产生了如深度小波网络、深度脊波网络和深度轮廓波网络等模型。根据其特性,我们称这些网络为深度融合网络。2014年以来,大量的研究文献表明层级“深度”的不断增加,或导致性能显著提升(如深度残差网络、深度分形网络),抑或导致性能严重下降(本质上是参数量远大于训练数据量)。为了解决该问题,一方面通过多通路、并行化的网络设计来削弱“深度”对性能的依赖性,同时塔式结构、对称性等也被融入网络的设计过程中; 另一方面,深度生成模型也悄然兴起,其核心是通过生成训练数据集的概率密度函数来实现数据的扩充,其代表便是生成式对抗网络和变分自编码器。值得注意的是,与传统的深度学习设计“单网络”不同,生成式对抗网络采用了“两个子网络”来实现非合作状态下的博弈,在最小最大值定理的保证下,理论上可以保证网络的收敛性。除了模型结构和优化策略改进外,应用问题背景也不再是经典的输入输出“单数据对”刻画,而是从状态到行动“整体性”刻画。众所周知,感知、认知和决策是衡量智能化的标准,充分发挥深度学习的感知能力和强化学习的决策能力,形成的深度强化学习已在众多应用问题上取得突破,如无人驾驶、计算机围棋程序和智能机器人等。在后深度学习时代,其核心在于生成数据、环境交互和领域迁移,对应着深度生成网络、深度强化学习和深度迁移学习将继续成为人工智能领域的研究热点。另外,根据数据的属性和操作的有效性,衍生的网络包括深度复数域神经网络(如深度复卷积神经网络)、深度二值神经网络和深度脉冲神经网络等。

我们依托智能感知与图像理解教育部重点实验室、智能感知与计算国际联合实验室及智能感知与计算国际联合研究中心于2014年成立了类脑计算与深度学习研究中心,致力于类脑计算与深度学习的基础与应用研究,搭建了多个深度学习应用平台,并在深度学习理论、应用及实现等方面取得了突破性的进展,本书即是我们在该领域研究工作的初步总结。

本书的完成离不开团队多位老师和研究生的支持与帮助,感谢团队中侯彪、刘静、公茂果、王爽、张向荣、吴建设、缑水平、尚荣华、刘波、刘若辰等教授以及马晶晶、马文萍、白静、朱虎明、田小林、张小华、曹向海等副教授对本工作的关心支持与辛勤付出。感谢王蓉芳博士、冯捷博士、张丹老师,以及唐旭、刘芳、谢雯、任博、魏野、王善峰、冯志玺等博士生在学术交流过程中无私的付出与生活上的关心。同时,特别感谢赵佳琦、刘旭、赵暐、朱浩、孙其功、任仲乐、李娟飞、张雅科、宋玮、张文华等博士生,以及马丽媛、杨争艳、张婷、李晰、孟繁荣、汶茂宁、侯瑶琪、孙莹莹、张佳琪、杨慧、王美玲等研究生在写作过程中无私付出的辛勤劳动与努力。感谢宋玮、张文华等博士生帮忙校勘时发现了许多笔误。

本书是我们团队在该领域工作的一个小结,也汇聚了西安电子科技大学智能感知与图像理解教育部重点实验室、智能感知与计算国际联合实验室及智能感知与计算国际联合研究中心的集体智慧。在本书出版之际,特别感谢邱关源先生及保铮院士三十多年来的悉心培养与教导,特别感谢徐宗本院士、张钹院士、李衍达院士、郭爱克院士、郑南宁院士、谭铁牛院士、马远良院士、包为民院士、郝跃院士、陈国良院士、韩崇昭教授,IEEE Fellows管晓宏教授、张青富教授、张军教授、姚新教授、刘德荣教授、金耀初教授、周志华教授、李学龙教授、吴枫教授、田捷教授、屈嵘教授、李军教授和张艳宁教授,以及马西奎教授、潘泉教授、高新波教授、石光明教授、李小平教授、陈莉教授、王磊教授等多年来的关怀、帮助与指导,感谢教育部创新团队和国家“111”创新引智基地的支持; 同时,我们的工作也得到西安电子科技大学领导及国家“973”计划(2013CB329402)、国家自然科学基金(61573267,61472306,61671305,61573267,61473215,61571342,61572383,61501353,61502369,61271302,61272282,61202176)、重大专项计划(91438201,91438103)等科研任务的支持,特此感谢。同时特别感谢清华大学出版社的大力支持和帮助,感谢王芳老师和薛阳老师

付出的辛勤劳动与努力。感谢书中所有被引用文献的作者。

20世纪90年代初我们出版了《神经网络系统理论》《神经网络计算》《神经网络的应用与实现》等系列专著,三十年来神经网络取得了长足的进展,本书的取材和安排完全是作者的偏好,由于水平有限,书中不妥之处恳请广大读者批评指正。


著者

2017年3月

西安电子科技大学






规格参数

品牌 京东图书
出版时间 2017-07-01
品牌属地 中国
出版社 清华大学出版社
ISBN 9787302473671
版次 1
印刷时间 2017-07-01
包装 平装
著者 焦李成
用纸 胶版纸

免责声明

产品价格、包装、规格等信息如有调整,恕不另行通知。我们尽量做到及时更新产品信息,但请以收到实物为准。使用产品前,请始终阅读产品随附的标签、警告及说明。

查看详情
由 京东图书 销售
{{ __("Ship to :shippingDist", {shippingDist: shippingDist}) }}
{{ __("Ship to United States only") }}
满$69免运费
正品保证

已加入购物车

继续逛逛

为你推荐

{{ item.brand_name }}

{{ item.item_name }}

{{ item.currency }}{{ item.market_price }}

{{ item.currency }}{{ item.unit_price }}

{{ item.currency }}{{ item.unit_price }}

优惠券

{{ coupon.coupon_name_new | formatCurrency }}
领取 已领取 已领完
{{ getCouponDescStr(coupon) }}
{{ coupon.use_time_desc }}
即将过期: {{ formatTime(coupon.use_end_time) }}

分享给好友

取消

亚米礼卡专享价

使用礼卡支付即可获得礼卡专享价

规则说明

礼卡专享价是部分商品拥有的特殊优惠价格;

购买礼卡专享价商品时,若在结算时使用电子礼卡抵扣支付,且礼卡余额足够支付订单中所有礼卡专享价商品的专享价总和,则可以启用礼卡专享价;

不使用礼卡支付,或礼卡余额不满足上一条所述要求时,将无法启用礼卡专享价,按照普通售价计算,但您仍然可以购买这些商品;

在购买礼卡专享价商品时,若余额不足,可以在购物车或结算页中点击“充值”按钮对礼卡进行购买和充值;

商品若拥有礼卡专享价,会显示“专享”的特殊价格标记;

如有疑问,请随时联系客服;

礼卡专享价相关规则最终解释权归亚米所有。

由 亚米 销售

服务保障

yamibuy 满$49免运费
yamibuy 无忧退换
yamibuy 从美国发货

配送信息

  • 美国48个州

    1. 标准配送 $5.99,最终价满$49免运费

    2. 本地配送$5.99(加州,纽约州,新泽西,麻省和宾夕法尼亚,以上州部分地区);最终价满$49免运费

  • 阿拉斯加/夏威夷

    1. 两日达(包含阿拉斯加夏威夷)

    2. 空运资费$19.99起

退换政策

亚米网希望为我们的客户提供最优秀的售后服务,让所有人都能放心在亚米购物。亚米自营商品在满足退换货条件的情况下,可在收到包裹的30天之内退换商品(食品因商品质量问题7天内可退换,其他特殊商品需联系客服咨询)。

查看详情

由 亚米 销售

亚米电子礼品卡使用规则

若购买时选择自动充值,订单完成后礼卡将自动充值到您的账户中;

若购买时选择发送邮件,订单完成后系统将自动发送卡号和密码到您填写的邮箱;

发送邮件时,任何用户均可使用邮件中的卡号密码进行礼卡充值,请妥善保管邮件信息。

如接收邮件遇到问题,请联系客服处理;

发送邮件时,若礼卡没有被兑换,可以补发邮件。若已经被其他用户兑换,则无法补偿;

亚米网电子礼卡可用于购买自营或第三方商品;

亚米网电子礼卡没有有效期限制,长期有效;

亚米网电子礼卡的金额,可分多次使用;

亚米网电子礼卡业务规则,最终解释权归亚米网所有。

退换政策

已消费的电子礼卡不支持退款。

由 京东图书 销售

服务保障

yamibuy 满$49免运费
yamibuy 最优售后
yamibuy 美国本土发货

配送信息

  • 美国48个州

    1.标准配送 $5.99,最终价满$49免运费

    2.本地配送$5.99(加州,纽约州,新泽西,麻省和宾夕法尼亚,以上州部分地区);最终价满$49免运费

  • 阿拉斯加/夏威夷

    ALASKA/HAWAII $19.99 (10磅以下)

退换政策

提供30天内退还保障。产品需全新未使用原包装内,并附有购买凭据。产品质量问题、或错发漏发等,由商家造成的失误,将进行补发,或退款处理。其它原因需退货费用由客户自行承担。

由 京东图书 销售

服务保障

yamibuy 跨店满$69免运费
yamibuy 30天退换保障

亚米-中国集运仓

由亚米从中国精选并集合各大优秀店铺的商品至亚米中国整合中心,合并包裹后将一次合包跨国邮寄至您的地址。跨店铺包邮门槛低至$69。您将在多商家集合提供的广泛选品中选购商品,轻松享受跨店铺包邮后的低邮费。

退换政策

提供30天内退换保障。产品需在全新未使用的原包装内,并附有购买凭据。产品质量问题、错发、或漏发等由商家造成的失误,将进行退款处理。其它原因造成的退换货邮费客户将需要自行承担。由于所有商品均长途跋涉,偶有简易外包压磨等但不涉及内部质量问题者,不予退换。

配送信息

亚米中国集运 Consolidated Shipping 运费$9.99(订单满$69 包邮)

下单后2个工作日中国商家发货,所有包裹抵达亚米中国整合中心(除特别情况及中国境内个别法定节假日外)会合并包裹后通过UPS发往美国。UPS从中国发货后到美国境内的平均时间为10个工作日左右,根据直发单号可随时跟踪查询。受疫情影响,目前物流可能延迟5天左右。包裹需要客人签收。如未签收,客人须承担包裹丢失风险。

由 京东图书 销售

服务保障

满$69免运费
正品保证

配送信息

Yami Consolidated Shipping 运费$9.99(订单满$69包邮)


下单后1-2个工作日内发货。 物流时效预计7-15个工作日。 如遇清关,交货时间将延长3-7天。 最终收货日期以邮政公司信息为准。

积分规则

不参加任何折扣活动以及亚米会员积分制度。

退换政策

提供30天内退还保障。产品需全新未使用原包装内,并附有购买凭据。产品质量问题、或错发漏发等,由商家造成的失误,将进行补发,或退款处理。其它原因需退货费用由客户自行承担。

转盘抽奖

转盘抽奖

Yamibuy

下载亚米应用

返回顶部

为你推荐

品牌故事

京东图书

为您推荐

Yamibuy
欣葉
2种选择
欣叶 御大福 芋头麻薯 180g

周销量 600+

$1.66 $1.99 83折
Yamibuy
欣葉
2种选择
欣叶 御大福 芋头麻薯 180g

周销量 600+

$1.66 $1.99 83折
Yamibuy
欣葉
2种选择
欣叶 御大福 芋头麻薯 180g

周销量 600+

$1.66 $1.99 83折
Yamibuy
欣葉
2种选择
欣叶 御大福 芋头麻薯 180g

周销量 600+

$1.66 $1.99 83折
Yamibuy
欣葉
2种选择
欣叶 御大福 芋头麻薯 180g

周销量 600+

$1.66 $1.99 83折
Yamibuy
欣葉
2种选择
欣叶 御大福 芋头麻薯 180g

周销量 600+

$1.66 $1.99 83折

评论{{'('+ commentList.posts_count + ')'}}

分享你的感受,帮助更多用户做出选择。

写评论
{{ totalRating }} 写评论
  • {{i}}星 {{i}}星 {{ parseInt(commentRatingList[i]) }}%
查看全部
全部 已购买 照片
Yamibuy Yamibuy
{{ comment.user_name }}

{{ showTranslate(comment) }}收起

{{ strLimit(comment,800) }}查看全部

Show Original

{{ comment.content }}

Yamibuy
查看更多

{{ formatTime(comment.in_dtm) }} 已购买 {{groupData}}

{{ comment.likes_count }} {{ comment.likes_count }} {{ comment.reply_count }} {{comment.in_user==uid ? __('Delete') : __('Report')}}
Yamibuy Yamibuy
{{ comment.user_name }}

{{ showTranslate(comment) }}收起

{{ strLimit(comment,800) }}查看全部

Show Original

{{ comment.content }}

Yamibuy
查看更多

{{ formatTime(comment.in_dtm) }} 已购买 {{groupData}}

{{ comment.likes_count }} {{ comment.likes_count }} {{ comment.reply_count }} {{comment.in_user==uid ? __('Delete') : __('Report')}}

暂无符合条件的评论

评论详情

Yamibuy Yamibuy

{{ showTranslate(commentDetails) }}收起

{{ strLimit(commentDetails,800) }}查看全部

Show Original

{{ commentDetails.content }}

Yamibuy
查看更多

{{ formatTime(commentDetails.in_dtm) }} 已购买 {{groupData}}

{{ commentDetails.likes_count }} {{ commentDetails.likes_count }} {{ commentDetails.reply_count }} {{commentDetails.in_user==uid ? __('Delete') : __('Report')}}

请输入内容

回复{{'(' + replyList.length + ')'}}

Yamibuy Yamibuy

{{ showTranslate(reply) }}收起

{{ strLimit(reply,800) }}查看全部

Show Original

{{ reply.reply_content }}

{{ formatTime(reply.reply_in_dtm) }}

{{ reply.reply_likes_count }} {{ reply.reply_likes_count }} {{ reply.reply_reply_count }} {{reply.reply_in_user==uid ? __('Delete') : __('Report')}}

请输入内容

取消

End

发表评论
商品评分

请输入评论

  • 一个好的昵称,会让你的评论更受欢迎!
  • 修改了这里的昵称,个人资料中的昵称也将被修改。
感谢你的评论
你的好评可以帮助我们的社区发现更好的亚洲商品。

举报

取消

确认删除该评论吗?

取消

京东图书

查看全部
京东图书

人间失格

1
$18.07
京东图书 销售
京东图书

人与自然·水乡篇

$32.35
京东图书 销售
京东图书

小婴孩:早识300字

2
$15.59
京东图书 销售
京东图书

一切都是最好的安排

$19.68
京东图书 销售
京东图书

人性的弱点

$19.19
京东图书 销售
京东图书

山海经

$39.89
京东图书 销售
京东图书

沙丘

$38.06
京东图书 销售
京东图书

世界十大文学名著:罪与罚

$19.95
京东图书 销售
京东图书

IDA Pro权威指南(第2版)

$39.59
京东图书 销售
京东图书

克苏鲁神话合集

$47.86
京东图书 销售

历史浏览

品牌故事

京东图书

{{email ? __('Got it!') : __('Restock Alert')}}

我们将在商品到货后第一时间通知你。

取消